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Abstract Heavy precipitation, often associated with weather phenomena such as tropical cyclones,
extratropical cyclones (ETCs), atmospheric rivers (ARs), and mesoscale convective systems (MCSs), can cause
significant socio‐economic loss. In this study, we apply atmospheric feature trackers to quantify the
contributions of these storm types in observational data sets and climate model short‐range hindcasts. We
generate a global hourly storm data set at 0.25° spatial resolution covering 2006–2020, based on the tracking
results from TempestExtremes and Python FLEXible object TRacKeR. Our analyses show that these four storm
types account for 67% of global annual mean precipitation and 82% of top 1% precipitation extremes, with
MCSs mainly over the tropics, and ARs and ETCs over the midlatitudes. The percentage of precipitation
contributions from these storms also show strong seasonality over many geographical locations. We further
apply the tracking results to the Energy Exascale Earth System Model (E3SM) short‐range hindcasts and
evaluate how well these storms are simulated. The evaluation show that E3SM, with ∼1° resolution,
significantly underestimates storm‐associated precipitation totals and extremes, especially for MCSs in the
tropics. Our analysis also suggests that model fails to capture the correct mean diurnal phases and amplitude of
MCS precipitation. This phenomenon‐based approach provides a better understanding of precipitation
characteristics and can lead to enhanced model evaluation by revealing underlying problems in model physics
related to precipitation processes associated with the heavy‐precipitating storms.

Plain Language Summary Earth system models are immensely useful for understanding how the
climate system works. However, it is important to recognize that they have limitations including wet or dry
precipitation biases caused by complicated factors. On the other hand, different storm types contribute to
regional precipitation differently under varying conditions. Attributing precipitation to sourced storm types is a
new approach to understanding model precipitation biases. Here we build a new data set to study precipitation
from several storm types including tropical cyclones, extratropical cyclones, atmospheric rivers, and mesoscales
convection systems. We find that these four storm types explain 67% of global mean precipitation and 82% of
extreme precipitation. We also demonstrate the application of this tool for understanding biases in modeled
precipitation. The future application of this new tool will shed light on the causes of modeled precipitation
biases and underlying model problems.

1. Introduction
Precipitation is a critical factor for sustaining ecosystems and providing necessary water resources for human use.
However, heavy precipitation can cause large socio‐economic damages in part due to flooding, crop damages, and
landslides. For example, a series of atmospheric river (AR) caused record‐high snowfall and rainfall, which
further induced severe flooding, mudslides, and power outages in California, U.S. during the winter of 2022–2023
(NOAANational Centers for Environmental Information, 2023). Given that most of disastrous weather events are
associated with heavy‐rain storms, a crucial ongoing research challenge is to better understand these storm
systems and ensure that Earth system models (ESMs) can realistically predict their associated precipitation across
a variety of spatial and temporal scales. This information is also important for developing innovative solutions to
ensure that infrastructure is resilient to extreme weather events and hydrological changes in a warmer climate.
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Unfortunately, it remains challenging for conventional ESMs to realistically simulate the magnitude and timing of
these extreme precipitation events (e.g., Kooperman et al., 2022), which are associated with a variety of storm
types, for reasons that include biases in model parameterizations and insufficient spatial resolutions (Dai, 2006;
Sun et al., 2006). Recently, ESMs with higher spatial resolutions, such as global storm‐resolving models, have
made significant progress in capturing finer‐scale precipitation features (H.‐Y. Ma et al., 2022; Stevens
et al., 2019). Although higher resolution ESMs, like GSRMs, can better simulate finer‐scale structure of storm
systems, lower resolution (∼100 km) ESMs are essential and commonly used for exploring long‐term Earth
system variability and changes with much lower computational cost. It remains worthwhile to diagnose the causes
of lower‐resolution ESMs precipitation biases from a phenomena‐based perspective (Kooperman et al., 2022;
Leung et al., 2022).

Previous phenomena‐based evaluation of ESMs focused on weather features, including tropical cyclones (TCs),
extratropical cyclones (ETCs), ARs and, more recently, mesoscale convective systems (MCSs) (e.g., Caldwell
et al., 2019; Feng, Leung, et al., 2021; Feng, Song, et al., 2021; Feng et al., 2023; Leung et al., 2022; Reed
et al., 2023; Zarzycki et al., 2017, 2021; Zhao, 2020; Zhao et al., 2009). While early studies usually focused on a
single storm type, recent research has begun to analyze multiple storm types simultaneously, such as the works by
Zhao (2022), Prein et al. (2023), and Reed et al. (2023). Zhao (2022) used observational data sets and a high‐
resolution climate model to quantify precipitation from tropical storms, ARs, and MCSs, which are tracked at
6‐hourly and 50‐km resolution. Prein et al. (2023) used reanalysis to reconstruct historical TCs, ETCs, anticy-
clones, ARs, MCSs, and frontal systems at hourly and 30‐km resolution and highlighted the importance of these
storm types and their interactions to extreme precipitation. Reed et al. (2023) evaluated modeled precipitation
over the continental US, focusing on TCs, ETCs, and MCSs. These phenomena‐based studies rely on feature
tracking algorithms for detecting weather phenomena, which have been developed and applied to climate model
diagnostics (e.g., Prein et al., 2023; Reed et al., 2023; Ullrich & Zarzycki, 2017; Ullrich et al., 2021; Zhao
et al., 2009). These studies represent a significant advance in feature tracking applications and enable a more
comprehensive analysis of multiple storm types.

Following upon previous research, the objective of this study is to construct a long‐term high‐resolution global
observational database for tracking four major heavy‐rain storm systems: TCs, ETCs, ARs, andMCSs. Moreover,
we use tracking outputs to develop an evaluation framework for attributing precipitation associated with these
major storm types in ESM simulations. In particular, we conduct climate model short‐range hindcasts (H.‐Y. Ma
et al., 2015, 2021) so the storm events in the hindcasts can be directly compared to the same observational tracking
results, which has not been studied. We utilize data at hourly resolution and thus include more short‐duration
rainfall extremes compared to previous studies that used a coarser temporal resolution (e.g., 6‐hourly). This
also allows us to examine additional precipitation characteristics, such as the diurnal cycle, which has not yet been
analyzed in ESM short‐range hindcasts. In this paper, we aim to address the following questions: (a) How much
global annual mean precipitation is associated with TCs, ETCs, ARs, and MCSs? (b) What are spatiotemporal
characteristics of storm‐associated precipitation? (c) How well does the Energy Exascale ESM (E3SM) simulate
storm‐associated precipitation?

This paper is organized as follows. In Section 2, we introduce the tracking method and data sets. In Section 3, we
present the results of storm‐associated precipitation based on observational data sets, as well as model evalua-
tions. We further discuss the sensitivity of tracking to model resolutions and the co‐occurrences of multiple storm
types in Section 4. Finally, Section 5 summarizes our findings and presents conclusions.

2. Feature Tracking Methods and Data
In this section, we present our tracking method and input data. The overall procedures of this framework are
shown as a flowchart in Figure 1. Table 1 briefly summarizes the tracking thresholds, which are primarily based
on previously published tracking algorithms. Observational data sets (“OBS” hereafter), including reanalysis and
satellite‐based data sets, are used as the inputs for tracking algorithms.

2.1. TempestExtremes

Feature tracking for TCs, ETCs, and ARs is performed using the TempestExtremes software package (Ull-
rich, 2022; Ullrich et al., 2021; Ullrich & Zarzycki, 2017), which is a powerful and user‐friendly tool to detect
nodal or areal features in climate data sets.
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In this study, the TC detection algorithm employed is based on Zarzycki and Ullrich (2017), where the algorithm
thresholds were optimized by comparing with the best available reference from the International Best Track
Archive for Climate Stewardship (IBTrACS, Knapp & Kruk, 2010). Here, the TC center is defined as a local sea
level pressure minimum with a vertical warm core structure, which is defined by a minimum threshold on
geopotential thickness between 300 hPa (Z300) and 500 hPa (Z500). Following Ullrich et al. (2021) and
Stansfield et al. (2020), the TC areas are then defined within the radius where the azimuthally averaged surface
wind speed exceeding 8 m s− 1 (r8), which is calculated for each TC at each given time step.

The ETC detection algorithm is similar to the one used for TCs but requiring the absence of a warm core structure.
ETC regions are defined as a static 12° radius of great circle distance around the ETC center, which is adopted
from Zarzycki (2018) and Hawcroft et al. (2012).

The AR detection algorithm is similar to those used in Ullrich et al. (2021) and McClenny et al. (2020), who
applied a Laplacian to the integrated vapor transport (IVT) fields to detect the IVT ridges. Following Ullrich
et al. (2021), we use a Laplacian threshold of − 20,000 kg m− 2 s− 1 deg− 2. Since this threshold is less restrictive
than some studies (e.g., McClenny et al., 2020), we also apply an additional absolute 250 kg m− 2 s− 1 IVT
threshold. Figure S1 in Supporting Information S1 presents all the TempestExtremes command lines used in this
study.

Figure 1. Flowchart of framework in this study. The snapshots represent feature masks for one sample hour. The procedures
are conducted for hourly data in 2006–2020.

Table 1
Feature Tracking Algorithms, Parameters, and the Defined Regions for Masking Precipitation

Feature Primary tracking method Other threshold Primary reference

Tropical
cyclone (TC)

Center defined by sea‐level pressure minima
with warm core structures (Z300‐Z500);
Regions defined by wind speed r8 radius

48 hr minimum lifetime with surface
wind > 10 m s− 1; altitude < 150 m; lat < 50°
N/S; center located in lat < 30°N/S for at
least 1 hr

Zarzycki and Ullrich (2017)

Extratropical
cyclone (ETC)

Center defined by sea level pressure minima and
without warm core structures; Regions
defined by 12° great‐circle distance (GCD)

48‐hr minimum lifetime with altitude < 70 m Ullrich et al. (2021)

Atmospheric
River (AR)

Regions with ridges of integrated vapor transport
(IVT): Laplacian of
IVT ≤ − 20,000 kg m− 2 s− 1 deg− 2, and
IVT > 250 kg m− 2 s− 1

Area > 400,000 km2 with at least half grid cells
located in lat > 20°N/S

Ullrich et al. (2021)

Mesoscale
Convective
System (MCS)

Regions of Tb < 241 K with inner core
Tb < 225 K

Cloud system area > 40,000 km2 Feng, Leung, et al. (2021)
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2.2. PyFLEXTRKR

We used the global MCS tracking data produced by the Python FLEXible object TRacKeR (PyFLEXTRKR)
algorithm (Feng et al., 2018, 2019, 2023; Feng, Leung, et al., 2021; Feng, Song, et al., 2021), which has
capabilities to track convective clouds from a variety of OBS and model simulations. MCSs here are identified
as cold cloud systems, where brightness temperature (Tb) is less than 241 K with inner cores of Tb less than
225 K. A given MCS system is defined as a cold cloud system >40,000 km2 continuously for longer than 4 hr.
Here we use the tracking results only defined by Tb (“cloudtracknumber”) and before the exclusion of TCs
and ARs.

The original global PyFLEXTRKR MCS tracking data set is 0.1° and hourly from 2000 to 2020 (Feng, Leung,
et al., 2021; Feng, Song, et al., 2021). When a significant fraction of a given satellite hourly scan is missing, no
MCS tracking data is produced for that hour. Since the missing Tb scans mainly occur over East Asia during
2003–2005 (Figure S9 in Feng, Leung, et al. (2021) and Feng, Song, et al. (2021)), we only use the data from 2006
and thereafter, and remove those missing hours (621 hr, <0.5% of total hours) from all further analysis. Statistics
of data coverage are shown in Figures S1 and S2 in Supporting Information S1.

2.3. Observational and Reanalysis Data Sets

All the required variables (Table 1) for TC, ETC, and AR tracking with TempestExtremes are from the ERA5
reanalysis (Hersbach et al., 2018, 2020). ERA5 is the latest reanalysis from theEuropeanCenter forMedium‐Range
Weather Forecasts which applied data assimilation to integrate models and observations to produce the best‐
estimate historical reconstruction of the seamless fields. We use the hourly and 0.25° data for tracking TCs,
ETCs, and ARs.

Since the spatiotemporal scale of MCSs is much finer than TCs, ETCs, and ARs, we find that MCS frequency can
be significantly underestimated when tracking on the 0.25° Tb converted from ERA5 outgoing longwave radi-
ations with TempestExtremes. Therefore, we directly use the published PyFLEXTRKR global MCS data set
(Feng, Leung, et al., 2021), which uses the National Aeronautics and Space Administration merged geostationary
satellite infrared brightness temperature Tb data (Janowiak et al., 2001).

Two satellite‐based, high‐spatiotemporal‐resolution precipitation data sets are used to assess data uncertainties,
especially for extreme precipitation. The Integrated Multi‐satellitE Retrievals for GPM (IMERG, Huffman
et al., 2019) is a gridded precipitation product that combines satellite microwave and infrared precipitation
retrievals with monthly rain gauge bias corrections. Here we use IMERG Level 3 Final Run Version 06B at
half‐hourly and 0.1° resolution, converted and regridded to hourly and 0.25° resolution with area‐conservative
remapping in Climate Data Operators (CDO, Schulzweida, 2023). The other precipitation product used is
NOAA Climate Prediction Center MORPHing technique product (CMORPH, P. Xie et al., 2019), which
combines passive microwave measurements. Here we use the hourly CMORPH product at 0.25° resolution.
Both IMERG and CMORPH have their limitations including (a) minor incomplete coverage, especially for
CMORPH, (b) underestimation of heavy rainfall events and overestimation of light rainfall in IMERG (Ayat
et al., 2020; Cui et al., 2020; Derin et al., 2022; Wang et al., 2022), (c) uncertainties and limitations in
measurements, algorithms, and calibration (Huffman et al., 2020; P. Xie et al., 2019). To classify rain and no
rain hours, we use a threshold of 0.2 mm hr− 1 for results in Figure 2, which is the criteria used in Huffman
et al. (2020). Since CMORPH exhibits more incomplete coverage over high latitudes, we use IMERG for our
main OBS results and present the CMORPH results in Supporting Information S1.

2.4. Prioritization of Storm Systems

The four storm types (TC/ETC/AR/MCS) can sometimes co‐occur. As our goal is to identify precipitation
from individual phenomena and to avoid double counting, we perform a workflow prioritization in the order
of TC, ETC, AR, and finally MCS. That is, TC masks with the highest priority are placed before ETC/AR/
MCS masks, and ETC/AR overlapping regions are defined as ETC (Figure 1). This ordering is similar to the
one in Zhao (2022) and is assigned due to their difference in tracking uncertainties, and the impacts of
prioritization to the results are explored in the Discussion. Compared to studies of single‐feature tracking, this
prioritization results in a lower precipitation contribution from MCSs, since TCs, ETCs, and ARs are already
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filtered. Finally, we produce hourly gridded classification data (0: no feature detected, 1: TC, 2: ETC, 3:AR,
and 4: MCS), which are then applied to mask the hourly precipitation (Figure 1). Simply, the precipitation
within the masks of each storm is treated as precipitation associated with the storm. TC precipitation is
precipitation within r8 radius. ETC precipitation is precipitation inside static 12° radius. AR precipitation is
within the IVT‐detected area, and MCS precipitation is within the Tb‐detected area.

In our analysis and figures, we also mask out the dry regions with long‐term average precipitation less than
0.5 mm d− 1 (about 0.02 mm hr− 1) from either IMERG or CMORPH, and the regions with substantial missing Tb
scans (Figure S2 in Supporting Information S1). The total size of the masked‐out regions is 64,756,543 km2,
which consists of 14.6% area in 60°S–60°N.

2.5. E3SM Short‐Range Hindcasts

The uniqueness of this study is that we further apply the OBS tracking results to climate model short‐range
hindcasts with the US Department of Energy's E3SM version 2 at a horizontal resolution ∼1° (native ne30pg2
grid, and regridded to 1° × 1°) and with 72 vertical levels (Golaz et al., 2022; S. Xie et al., 2019). Two‐day long
hindcasts are initialized every day at 00Z with ERA5 state variables for the entire 2011 following the procedure in
H.‐Y. Ma et al. (2015, 2021). We only conduct simulation for 1 year due to computational cost. Also, H.‐Y. Ma
et al. (2021) found that differences in precipitation mean errors between individual hindcast years are small and
generally not sensitive to interannual variability. The ocean and sea ice components are prescribed with the
NOAA optimum interpolation weekly sea surface temperature and sea ice (Reynolds et al., 2002). Day 1 is within
the timeframe of initial spinup (H.‐Y. Ma et al., 2013). Therefore, we then composite the results of 24–48 hr (Day
2) lead time in 2011. Also, the results do not change much with hindcast lead times beyond 0–24 hr (Day 1). The
OBS gridded classification data (storm masks in 0.25°) mentioned above are regridded to 1° × 1° with largest‐
area‐fraction remapping in CDO for matching the model resolutions. In this way, the OBS feature‐tracking masks
are directly applied to Day 2 hindcasts precipitation.

3. Results
3.1. Climatology From OBS

To understand how often each storm type occurs, we first analyze the frequency of rain hours from IMERG
(Figure 2) and CMORPH (Figure S3 in Supporting Information S1). Rain hours are defined when hourly OBS
precipitation is larger than 0.2 mm hr− 1. Among the four storm types, TC‐associated precipitation occurs rarely
and is only present in certain ocean basins—the West Pacific, subtropical East Pacific, South Indian, North
Atlantic, South Pacific, and North Indian. On average, TCs contribute to 1.4% of rain hours globally (area‐
averaged over valid regions) with the biggest hotspot being in a few small regions of the East Pacific, with a local
contribution up to 33.7% of rain hours. ETCs mostly occur at high latitudes over the ocean and contribute to 14.7%
of rain hours (Figure 2b) and 10.4% of total hours globally (Figure S4 in Supporting Information S1). ARs mainly
occur in midlatitudes over the storm track regions and contribute to 18.9% of rain hours and 5.1% of total hours
globally. MCSs contribute to 16.2% of rain hours globally and most of the rain hours in the tropics, especially over
the warm pools, intertropical convergence zone (ITCZ), Africa and major monsoon regions. Contribution from
MCSs can also be found in some area in the midlatitudes, such as the US Great Plains, along the lee of Andes, and
south Asia. These four storm types account for 51.2% of rain hours and 18.4% of total hours, with the remaining
48.8% rain hours (Figure 2f) arising from other precipitation sources, such as isolated convection cells or weaker
versions of these four storm types which fall outside the tracking criteria.

In Figures 3 and 4, we further examine the precipitation amount contributed from these four storm types. The
spatial patterns of precipitation amount (Figure 3) largely follow the ones of frequency (Figure 2). The region of
largest TC precipitation amount is over the western Pacific (Figure 3a) with gridded values up to 2.82 mm day− 1.
The largest ETC precipitation regions follow the midlatitude storm tracks with the largest contribution in the
northwestern Pacific. Since ARs are generally associated with ETC cold fronts, the distribution of AR precipi-
tation amount approximately follows the ETC distribution (Figures 3b and 3c) and contributes to 20%–60%
precipitation within 20–50°S and 20–50°N (Figure 4c). MCS precipitation contribution reaches the highest local
values compared to ones from TC/ETC/AR and often exceeds 50% of the total precipitation in the tropics
(Figure 4d). This is perhaps unsurprising, as TC/ETC/AR events are largely absent around the equator. The
average precipitation contributions from TC/ETC/AR/MCS 60°S–60°N are 2.7%, 15.8%, 21.7%, and 26.7%,
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respectively. Results from CMORPH are in good consistency (Figure S5 in Supporting Information S1), with
attributed precipitation equal to 2.5%, 15.9%, 22.2%, and 23.9%, respectively. Note that these numbers emerge
after applying the ordering procedure discussed in Section 2.4. Overall, these four storm types accounts for 66.9%
of total precipitation using IMERG and 64.5% using CMORPH.

We further investigate the dominant storm type for precipitation contribution at any given location and in different
seasons (Figure 5). The dominant precipitation source is classified as the storm type with the largest precipitation
contribution, if its contribution is larger than 25%. If there is no more than 25% of precipitation contributed by any
storm type, no dominant storm type is present and is marked in white in Figure 5. Figures 5b–5e show strong
seasonality of the dominant storm types in the midlatitudes. TC precipitation only dominates in a small fraction of
ocean regions within 15–30°S and 15–30°N. ETCs dominate over ocean in the mid and high latitudes. As ex-
pected, precipitation over the west coast of North America and Europe is dominated by ARs in December–
February (DJF). In the tropics, MCSs dominate throughout the year. In June–August (JJA), MCSs also domi-
nate over the central US and the South Asian monsoon regions, while in DJF, MCSs also dominate over the South
America, South Africa, and the northern part of Australia.

As shown in Figure 5, the dominant storm types are different in different seasons and latitude bands. Here we
focus on JJA over three latitude bands to examine the probability density function (PDF) of the hourly precip-
itation (Figure 6 for IMERG and Figure S6 in Supporting Information S1 for CMORPH). The samples are all
hourly data in JJA 2018–2020 across 0.25° grid cells and grouped into log10‐scale bins. In all three latitude bands
(Figures 6a, 6c, and 6e), these four storm types together contribute to most of the heavier precipitation
(>4 mm hr− 1), and other precipitation sources contribute to most of the lighter precipitation (<0.1 mm hr− 1,
Figures 6a, 6c, and 6e). We further decompose individual contributions from each storm type in Figures 6b, 6d,
and 6f. Within 0–15°N (Figure 6b), MCSs contribute to most of the precipitation in all bins, with a similar
frequency distribution of combined TC/ETC/AR/MCS precipitation shown in Figure 6a (red curve). Within 15–
30°N (Figure 6d), ARs and MCSs contribute to most of the precipitation across the distribution, with small
contribution from both TCs and ETCs. MCSs contribute to more intense precipitation while ARs have broader
distribution, which contribute to both intense and light precipitation. Of the three latitude bands, the distribution

Figure 2. Contribution of each storm type to rain hours, summarized from hourly data in 2006–2020. Rain hours are defined
when hourly IMERG precipitation is larger than 0.2 mm hr− 1. The upper right numbers are the area‐weighted averages over
60°S–60°N excluding the gray regions. Others (f) are other precipitation sources.
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of TC precipitation is mostly confined within 15–30°N consistent with the results seen in Figure 5. Within 30–45°
N (Figure 6f), precipitation is mostly contributed by ARs and ETCs, with a smaller contribution from MCSs.
Overall, these four storm types account for most of the heavy precipitation in all three latitude bands, and MCS
particularly contributes to most of the heavy precipitation in low‐to‐middle latitudes.

Figure 3. Mean precipitation amount (mm day− 1) from each feature based on IMERG for 2006–2020.

Figure 4. Precipitation contribution (%, relative to the total precipitation of each grid cell) based on IMERG for 2006–2020.

Journal of Geophysical Research: Atmospheres 10.1029/2023JD039697

WU ET AL. 7 of 19



To further quantify the contribution of precipitation extremes from these four storm types, we present the indi-
vidual and combined storm precipitation contribution to the top 1% precipitation hours in Figure 7 (IMERG) and
Figure S7 in Supporting Information S1 (CMORPH).We first calculate the 99th precipitation amount based on all
hourly data (Figure 7f). Then, we analyze the compositions of the accumulated precipitation in top 1% precip-
itation hours (hourly precipitation greater than the 99th percentile) based on different storm types (Figures 7a–7e).
Together, these four storm types explain 81.5% of the extreme precipitation in the global mean and contribute to
more than 70% of extreme precipitation in most regions (Figure 7e). Most exceptions occur in the dry regions,
where the 99th percentile is generally low (Figure 7f). Overall, the results further confirm that these four storm
types account for a substantial proportion of extreme precipitation.

The hourly resolution provides unprecedented opportunities to understand the characteristics of the diurnal cycles
and the contributions of each storm type. The hourly precipitation fields, which are associated with different storm
types, are composited to the averaged diurnal cycles (24 hr) for each grid cell based on the local standard time. A
Fourier analysis is applied to the averaged diurnal cycles. The first Fourier harmonic component is used for the
amplitude and timing of diurnal cycle, consistent with methods used in Tao et al. (2022), P. Xie et al. (2019), and
S. Xie et al. (2019). Overall, the results in Figure 8 shows that MCS precipitation has pronounced amplitude of
diurnal cycle, and therefore dominant patterns of storm precipitation (Figures 8a and 8b). In most regions, the
diurnal phase of TCs, ETCs, and ARs are not pronounced (Figure S8 in Supporting Information S1) since the
systems are long‐lasting, and their precipitation mechanisms are not mainly related to diurnal radiative forcing. A
diurnal cycle for ETCs and ARs is only found in some parts of the midlatitude oceans with mild amplitudes and
peaks around early morning for ETCs and ARs (Figures S8b and S8c in Supporting Information S1). In contrast,
diurnal cycles of tropical MCS precipitation are pronounced with nocturnal to early morning peaks over ocean,
and evening peaks over land (Figure 8a), consistent with previous findings (e.g., Nesbitt & Zipser, 2003). The
spatial transition of diurnal peaks can also be found along MCS movements, which are usually initiated at the lee
of the mountains in the early afternoon and travel downstream (e.g., east of the RockyMountains as also shown in
Feng et al. (2019), lee of the Andes in South America). Figure 8c shows that land‐ocean contrast of diurnal cycle
from other precipitation sources are also pronounced. However, earlier peaks are both found over land and ocean
(Figure 8c), compared to the phase from storm precipitation (Figure 8b). Nocturnal rainfall occurs in tropical

Figure 5. Dominant storm types based on IMERG precipitation in 2006–2020. Colors show the feature with the largest
precipitation contribution in each grid cell. If there is no feature that contributes to more than 25% of total precipitation, the
regions are marked as white. (a) Annual average across all months (ANN), (b) December–February (DJF), (c) March–May
(MAM), (d) June–August (JJA), and (e) September–November (SON). 2017 June is excluded from JJA statistics due to a
large portion of missing Tb data.
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oceans and late afternoon rainfall occurs over the land (Figure 8c), implying that the other precipitation sources
are likely coming from local convection driven by local thermodynamic instability. The overall diurnal cycle,
shown in Figure 8d, has the combined patterns of Figures 8b and 8c. MCSs represent an important driver of the
overall diurnal cycle. The results here provide another perspective to understand the diurnal cycle of precipitation
and highlight the contribution of MCSs, a key factor in controlling the phase and amplitude of the diurnal cycle of
precipitation.

3.2. Evaluation of E3SM Short‐Range Hindcasts

One important question we want to address is how well ESMs simulate these storms, as they are critical to
understand our current Earth systems and their changes in the future, especially changes related to precipitation.
Realistic simulations of precipitation, however, is not trivial as ESMs would require accurate simulations of
convection and cloud processes. Furthermore, high‐resolution models and different precipitation parameteriza-
tions are usually required to better simulate the dynamics and thermodynamics structure of these storm systems
(Prein et al., 2021; Shields & Kiehl, 2016; Zarzycki et al., 2017). For free running ESM simulations, such as those
simulations from the Phase 6 of Coupled Model Intercomparison Project (CMIP6, Eyring et al., 2016), feature
tracking is needed to track these storm systems separately from OBS. Conventional CMIP6 models with typical
horizontal resolution of ∼100 km, however, are too coarse to adequately represent these storms, especially for
TCs andMCSs. Tropical cyclone structure is typically not well resolved for models with grid spacing coarser than
0.5°. And while the fine‐scale structures of MCSs are only present at convection‐resolving scales, MCS‐like
features are merely present in some models at 0.25°. Nonetheless, care should be taken under these circum-
stances when comparing feature statistics from free model runs with OBS. Instead of using free running simu-
lations, we conduct series of short‐range 2‐day long hindcasts with E3SM for the entirety of 2011. We apply the
same observed feature‐tracking masks directly to Day 2 (24–48 hr) hindcasts because the hindcasts are initiated

Figure 6. Hourly precipitation (mm hr− 1) distribution across time and space for each latitude bands during 2018–2020 JJA using IMERG. Precipitation samples are
grouped into 50 log10‐scale bins between 0.01 and 1,000 mm hr− 1. Relative frequency represents the counts relative to (normalized by) the counts of all precipitation
(sample numbers of black lines) in each latitude band. Distributions of all storm types are shown in red, other precipitation sources in blue, and total precipitation in
black within (a) 0–15°N, (c) 15–30°N, and (e) 35–45°N. Decompositions of individual storm type in panels (b, d, and f).
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with ERA5 reanalysis and the large‐scale environment remains close to ERA5 at Day 2 (H.‐Y. Ma et al., 2015).
However, it does not necessarily mean model captures all the storms as OBS.

Figures 9a–9c show the 2011 mean precipitation from the Day 2 hindcasts, OBS, and hindcast bias (hindcast‐
OBS), respectively. Model results show underestimated precipitation over regions such as cores of the ITCZ, the
northeasatern Pacific and the north Atlantic, and wet biases over regions such as central Africa and part of the
Maritime Continent (Figure 9c). Figures 9d–9i further show precipitation biases from different storm types. We
find that the model exhibits underestimated precipitation for all four storm types (Figures 9d–9h) but over-
estimated precipitation for other sources (Figure 9i). Of all four storm types, MCS‐associated precipitation biases
are the main contributor to the underestimation of storm‐associated precipitation found in the tropics (Figure 9g),
while AR‐ and ETC‐associated precipitation biases are the main contributors in midlatitdues (Figures 9e and 9f).
The small portions of overestimated precipitation from storm‐associated precipitation are mostly smaller than
0.05 mm hr− 1, with a small cluster in the northwestern part of North America from ETCs (Figure 9h).

We further compare the precipitation PDF from OBS and hindcasts in Figure 10. The samples are obtained from
hourly precipitation at 1° grids over 60°S–60°N in 2011. Modeled distributions suggest an overall overestimation
of light precipitation but underestimation of heavy precipitation (black lines in Figure 10a). Furthermore, the
overestimated light precipitation is mostly from other precipitation types while the underestimated heavy pre-
cipitation is mostly from storm precipitation (Figure 10a) This explains the underestimation of storm precipi-
tation, and overestimation of other precipitation shown in Figures 9h and 9i. The overestimation of light
precipitation is a long‐standing “frequent drizzle problem” for many GCMs (e.g., Chen et al., 2021), though it had
been improved from E3SM v1 to v2 by revised convective triggering function (Golaz et al., 2022; S. Xie
et al., 2019). In a recent study (W. Ma et al., 2023), the drizzle problem also been found in reanalysis for AR
precipitation, which is consistent with our results.

Figure 7. (a–e) Precipitation contribution (%) to top 1% precipitation hours from each storm type. The contribution is defined as the fraction of accumulated precipitation
greater than local 99th percentile values (f). 99th percentile values are statistics based on hourly IMERG precipitation during 2006–2020 at 0.25° resolution.
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The PDFs also shown that modeled precipitation rarely exceeds 10 mm hr− 1. Examining the PDFs of different
storm types (Figure 10b) reveals that overestimated light precipitation and underestimated heavy precipitation
(>2 mm hr− 1) can be found in most of the storm types except for TCs in the model simulations. For TC‐associated
precipitation, the model produces a narrower distribution compared to OBS with overestimated moderate pre-
cipitation (0.2–2 mm hr− 1) and underestimated precipitation at both tails. For heavier precipitation, which is

Figure 8. Composited diurnal cycle of IMERG precipitation. The diurnal phase (shown as colors) is in local standard time. The diurnal amplitude in mm hr− 1 is shown as
saturation. Precipitation magnitudes in panel (a–d) are all normalized by all hours used in this study during 2006–2020, not the individual storm event hours. Dry
regions, missing area regions, and regions with diurnal amplitude smaller than 0.01 mm hr− 1 are now shown. Diurnal amplitudes of tropical cyclone, extratropical
cyclone, and atmospheric river are relatively small and shown in Figure S8 in Supporting Information S1.

Figure 9. Comparison of modeled and OBS precipitation (mm day− 1) in 2011 (a) E3SM hindcast Day 2, (b) IMERG OBS, and (c) their differences (E3SM minus
IMERG). Precipitation differences are then classified into tropical cyclone, extratropical cyclone, atmospheric river, mesoscale convective system, and other
precipitation sources using the same classification method as in Section 2. Dots mark the regions where there are statistically significant at 95% level determined by a t‐
test using variances of hourly data in 2011.
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larger than 4 mm hr− 1 (upper right panels in Figure 10b), OBS suggests the strongest contribution arises from
MCSs, although the model rarely produces such heavy precipitation regardless of storm types.

We further examine whether extreme precipitation (in top 1% precipitation hours) and its partitioning by storm
type can be simulated in the hindcasts in Figure 11. As expected from the precipitation PDFs, the 99th percentile
of precipitation from E3SM hindcasts is much smaller than in OBS (Figures 11a and 11g). The globally averaged
99th percentile of precipitation is 1.3 mm hr− 1 for the E3SM hindcasts and 2.9 mm hr− 1 for the IMERG (OBS).
For each storm type, the accumulated precipitation above the 99th percentile is considerably underestimated
(Figures 11b–11e and 11h–11l). In particular, contributions from MCSs show strong disagreement with OBS,
especially in the tropics (Figures 11e and 11k). This suggests that even with realistic initialization of the hindcasts,
the model significantly underestimates the intensity of these top 1% precipitation events, especially for those
associated with MCSs in the tropics. As a result, only 59.5% of the accumulated precipitation from these four
storm types in E3SM hindcasts contribute to the extreme precipitation, compared to 81.9% in OBS (Figure S9 in
Supporting Information S1).

We also evaluate the diurnal cycle of precipitation for different storm types (Figure 12). Generally, the amplitude
of the diurnal cycle is underestimated (Figures 12d and 12h), which is largely attributed too little MCS precip-
itation (Figure 12e). Although the model still generates a land‐ocean contrast in the diurnal phase in MCS pre-
cipitation, a later peak is found over ocean in the model (early afternoon peak in the model and early morning peak
in OBS). The MCS precipitation phase over land is relatively better simulated compared to that over ocean.
Similar to the results for multi‐year averages in OBS in Figure 8, OBS phases of storm‐associated precipitation
from 2011 averages are distinct from other precipitation sources (earlier peak in other precipitation sources;
Figures 12b and 12c). However, this distinction is not obvious in model results (Figures 12f and 12g). Unlike the
afternoon peak over land for other precipitation sources in OBS (Figure 12c), the model typically peaks in the
evening, which is closer to the peaks of MCS precipitation events. This suggests that the distinct features of larger
and longer duration MCSs that separate them from smaller individual convective storms are not captured in the
model, particularly over land. For other precipitation over the tropical ocean, the model agrees quite well with
OBS on the midnight to early morning peak (Figures 12c and 12g). However, it should be noted that diurnal
precipitation from E3SM version 2 was improved compared to version 1 due to the revised convective triggering
scheme (Golaz et al., 2022; S. Xie et al., 2019).

Finally, we evaluate the precipitation structure of individual storm types. Figure 13 shows composites of pre-
cipitation for each storm type for OBS (blue shaded of Figure 13 top panels), hindcasts (red contours of top
panels) and their differences (Figure 13 bottom panels). The composites are produced with TempestExtremes, by
averaging surrounding fields centered on each feature center. The storm‐centered precipitation fields are the
results without masking (no storm boundaries) and prioritization mentioned in Section 2.3. A box of 21 × 21 grid
points at 1° resolutions is centered at TC/ETC centers or centroid points for AR/MCS areal features within 50°S–
50°N in 2011. For all storm types, model hindcasts underestimate precipitation intensity, especially for the peaks
around the storm centers (Figure 13). The magnitude of the underestimated precipitation is especially large in the

Figure 10. Hourly precipitation (mm hr− 1) distribution across time and space for 2011 from 1° grids over 60°S–60°N.
Relative frequency represents the counts relative to (normalized by) the counts of all precipitation (sample number of black
line). OBS (solid lines) are based on IMERG (OBS), and models (dash line) are based on E3SM Day 2 hindcasts. Small
panels in the upper right corner focus on the high tails (4–30 mm hr− 1).
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storm center compared to surrounding regions. Although the precipitation intensity is largely underestimated, the
locations of the composited storm center do not shift, likely because of the coarse grid size and global averaging.
However, further investigation is needed to understand whether the dynamics and propagation (e.g., location,
size, intensity) of the individual storms are well simulated in models.

Figure 11. Comparison of extreme precipitation between IMERG (OBS) and E3SM hindcast. (a/g) 99th percentile values are based on hourly IMERG/E3SM
precipitation in 2011. (b–f) Accumulated precipitation, which contribute to the top 1% precipitation hours from each storm types from IMERG (OBS), and (h–l) ones
from E3SM Day 2 hindcast.
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4. Discussion
In this study, we perform a phenomena‐based evaluation for E3SM short‐range hindcasts using the same storm
masks as OBS. Note that although the large‐scale environment is still close to the initial ERA5 state, E3SM with
low‐resolution configuration alone cannot properly simulation the life cycle of all storms, especially for MCSs
and TCs. Therefore, this also contributes to part of the underestimation of storm precipitation.

Conceptually different from hindcasts, feature tracking is expected to be done independently for free running
ESM simulations, like those simulations from CMIP6. Therefore, it is worth examining howmodel resolution and
output frequency affects the number of tracked features, if feature tracking is applied to other CMIP simulations.
Here we resample ERA‐5 data to different resolutions (Table 2) and apply the same TC tracking algorithms. We
only examined TCs because we expect ETCs and ARs to be less sensitive to resolution, owing to their larger
spatiotemporal scale, and noting that current free‐running conventional ESMs (25–250 km) are too coarse to
capture finer‐scale MCSs (H.‐Y. Ma et al., 2022). We apply two processing methods to upscale the data
temporally: (a) we subsample the hourly data at the desired frequency (e.g., keep hourly data at 00z for daily

Figure 12. Composited diurnal cycle of precipitation in 2011. (left) IMERG OBS (right) E3SM Day 2 hindcast. The diurnal phase (shown as colors) is in local standard
time, and the diurnal amplitude in mm hr− 1 is shown as saturation. Magnitudes in panels (a–h) are all normalized by all hours, not the individual storm event hours.
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Figure 13. Comparison of modeled (red contour, for E3SM hindcast Day 2) and OBS (blue colored shading, for IMERG) storm precipitation (mm hr− 1) at top and their
differences at bottom. Precipitation is composited with center of the storm system. Centers of atmospheric rivers (ARs) and mesoscale convective systems are defined as
the geometric centroid of the detected regions. Composites are the based on hourly data in 2011 with storm centers occurring in 50°S–50°N. These results do not include
the masking and prioritizing method mentioned in Section 2.4. Snapshots of 21 × 21 grids in 1° resolutions are shown. Dots mark the regions where are statistically
significant at 95% level with determined by a t‐test using variances of hourly snapshots. Results of different AR composite methods are shown in Figure S10 in
Supporting Information S1.

Table 2
Comparison of Tracked Tropical Cyclone Numbers in 2011 Globally Using Inputs of Different Spatiotemporal Resolutions

Temporal resolution Sampling (filtering) or averaging from hourly data Spatial resolution (°) Tracked TC numbers

Hourly None 0.25 97

Hourly None 0.5 87 (− 10%)

Hourly None 1.0 79 (− 19%)

3‐Hourly Sampling 0.25 91 (− 6%)

6‐Hourly Sampling 0.25 85 (− 12%)

Daily Sampling 0.25 76 (− 22%)

Daily Sampling 0.5 75 (− 23%)

Daily Sampling 1.0 73 (− 25%)

Daily Averaging 0.25 56 (− 42%)

Daily Averaging 0.50 53 (− 45%)

Daily Averaging 1.0 51 (− 47%)

Note. Original input data are ERA5 at hourly and 0.25°, and then upscale to different resolutions.
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sampling), or (b) we average all hours of the sample periods (e.g., average 24 hr). These two different approaches
imitate two types of ESM output strategies: averaging or instantaneous fields. Temporal averaging smooths the
fields and diminishes the dynamic evaluation within the time frame, while simply sampling the data retains the
original patterns. We also coarsen the 0.25° resolution data to 0.5° and 1.0° resolutions. Table 2 shows that the
number of global TCs drops with coarser temporal or spatial resolutions by 6%–47%, which indicates that feature
tracking is sensitive to the spatiotemporal resolutions of input data. More interestingly, temporal resolution
(hourly, 3‐hourly, 6‐hourly, and daily) has larger impact than spatial resolution (0.25°, 0.5°, and 1.0°). We also
find that subsampling data has less impact than averaging. Note that changing the resolution of the model
configuration is different from remapping the data as done here. However, this exercise can still provide guidance
on the limitations of coarse resolutions in future studies.

In addition to feature tracking, we apply prioritization/ordering to avoid overlayed storm types. In reality, these
storm types sometimes occur simultaneously, for example, some ARs are the heavy moisture transport corre-
sponding to the cold fronts of ETCs. MCSs can also overlap with all other storm types (TCs, ETCs, and ARs;
Feng, Leung, et al., 2021; Feng, Song, et al., 2021). When setting the order of prioritization, we carefully consider
the spatiotemporal scales, accuracy of tracking, and rigorousness of each definition across different storm types
(e.g., Prein et al., 2023; Zhao, 2022). Here we contrast the results without the prioritization ordering procedure.
Figure 14 shows the precipitation contributions similar as Figure 4 but without prioritization/ordering, and Figure
S10 in Supporting Information S1 shows the precipitation contribution of each co‐occurring features to total
precipitation. The comparisons show that prioritization/ordering leads to lower AR‐ and MCS‐ associated pre-
cipitation. Lower AR precipitation is caused by removing ETC/AR overlapping along the storm tracks in mid-
latitude oceans. The global average MCS precipitation contribution before and after prioritization is 43.8% and
26.7%, respectively. The reduction is mainly in the mid‐latitude ocean and some parts of land, including the
Eastern US and a small portion of Southeastern South America, in part due to co‐occurring of ARs and MCSs
(Figure S10f in Supporting Information S1). More detail study of interactions and co‐occurrences of different
storm types are done by Prein et al. (2023).

Some weak storms are not expected to be tracked and are classified as other precipitation sources (“others”).
“Others” can also come from weak versions of tracked features. For example, AR‐related precipitation over the
continental west coasts is sometimes not associated with the tracked ARs, and it might be due to the rapid IVT
decay at AR landfalls (Rutz et al., 2015). Future studies of redesigning tracking algorithms could include more
surrounding precipitation. Nevertheless, precipitation characteristics from “others” and storms (TC/ETC/AR/
MCS) have clear distinctions in their distribution (Figures 6 and 7) and diurnal cycles (Figure 8), which suggests
substantial contributions of local unorganized convections to “others.”

Figure 14. Precipitation contribution (%, relative to the total precipitation of each grid cell) based on IMERG for 2006–2020
without prioritization/ordering of storm types. The overlapping results are present in Figure S11 in Supporting
Information S1.
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5. Summary and Conclusions
In this study, we establish a global observational database of tracks for four major heavy‐rain storm systems: TCs,
ETCs, ARs, and MCSs. The global (60°S–60°N) data set is from 2006 to 2020 at high spatial and temporal
resolutions (0.25° and hourly). We document the characteristics of storm‐associated precipitation using OBS, and
also evaluate the performance of short‐term hindcasts from E3SM in simulating these storm systems.

The OBS analysis shows that TC/ETC/AR/MCS together account for 51% of rain hours and 67% of total global
precipitation amounts annually. These four storm types have strong seasonality and location dependencies and
play a crucial role in extreme precipitation, especially in the midlatitudes. On average, TC/ETC/AR/MCS
contribute to 82% of the heaviest precipitation events (those above 99th hourly percentile). Among the storm
types, the contribution of MCS to precipitation extremes is the largest, especially in the tropics, in agreement with
previous findings (Feng, Leung, et al., 2021; Prein et al., 2023; Zhao, 2022). We also find that MCS‐associated
precipitation has a pronounced diurnal cycles and a strong land‐ocean contrast that mostly explains the diurnal
cycle in tropics.

The present study also provides a new and unique approach for model diagnostics by focusing on storm‐
associated precipitation, demonstrated using climate model short‐term hindcasts. We find that E3SM at 1°
spatial resolution significantly underestimates storm‐associated precipitation intensity but overestimates other
precipitation sources. Hourly precipitation PDFs suggest that the four storm types account for most of the
heavy precipitation, which model is largely underestimated. The global mean 99th percentile precipitation
amount from E3SM is much smaller than that found in OBS, especially over the tropics where MCS
precipitation is significantly underestimated. The diurnal cycle phase and amplitude of precipitation for
different storm types are also evaluated. E3SM generally underestimates the amplitude of the diurnal
cycle and simulates incorrect phases especially for MCSs in the tropics and other precipitation sources over
land.

For the hindcast evaluation, we find that Day 2 simulations largely underestimated precipitation in MCS regions,
which might be due to various reasons. First, the model resolution used here (1°) is not fine enough to simulate
most of the MCSs though initialized by reanalysis. Therefore, we plan to apply this framework to higher reso-
lution hindcasts (i.e., 0.25° or finer) in the future. Second, we hypothesize most of the underestimated MCS
precipitation is partly due to discrepancies of short‐lived MCSs (i.e., lifetime shorter than 24 hr). Future work is
needed to understand how MCS characteristics affect the predictability.

As ESMs continually move toward finer resolutions, this storm‐based approach is especially suitable for
phenomenon‐based evaluation, leading to a better process‐level understanding for intense and extreme precipi-
tation events. This evaluation framework can also be applied to a variety of applications, including feature
detection, sub‐seasonal to seasonal forecasts, and climate change effects on storm‐associated precipitation
characteristics.

Data Availability Statement
All data sets used for this study are publicly available. We obtained ERA‐5 hourly reanalysis from https://doi.org/
10.24381/cds.adbb2d47 and https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2018), IMERG from https://
doi.org/10.5067/GPM/IMERG/3B‐HH/06 (Huffman et al., 2019), and CMORPH from https://www.ncei.noaa.
gov/products/climate‐data‐records/precipitation‐cmorph (P. Xie et al., 2019). Tempestextremes feature tracking
software is available at https://github.com/ClimateGlobalChange/tempestextremes. PyFLEXTRKR is available at
https://github.com/FlexTRKR/PyFLEXTRKR. TheU.S. DOEE3SMv2.0model is available at https://doi.org/10.
11578/E3SM/dc.20210927.1 (E3SM Project, DOE, 2021). Data sets used in this study are accessible via NERSC
Science Gateway portal at: https://portal.nersc.gov/archive/home/w/wu59/www/2024JGR. The code generated in
this study can be provided upon request to the corresponding author.
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